Math, asked by zivenop7, 6 hours ago

a, b and c are three rational numbers where a = (2/3) , b = (4/5) and c = (-5/6) Verify: (i) a + (b + c) = (a + b) + c (ii) a x (b + c) = (a x b) + (a x c) Also mention the name of the property in each case. *

Answers

Answered by hparekhdivyakant
0

Answer:

I don't know thank you

Answered by panchalshyama59
0

Step-by-step explanation:

Solution :

When

• a = \sf\dfrac{2}{3}

32

• b = \sf\dfrac{4}{5}

54

• c = \sf\dfrac{-5}{6}

6−5

1. Associative Property of Addition

\longrightarrow \sf \: a + (b + c) = (a + b) + c⟶a+(b+c)=(a+b)+c

\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{4}{5} + \dfrac{ - 5}{6} ) = ( \dfrac{2}{3} + \dfrac{4}{5} ) + \dfrac{ - 5}{6}⟶

32 +( 54+ 6−5 )=( 32+ 54)+ 6−5

\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{4}{5} - \dfrac{ 5}{6} ) = ( \dfrac{2}{3} + \dfrac{4}{5} ) - \dfrac{ 5}{6}⟶ 32 +( 54 − 65 ). b=( 32+ 54 )− 65

\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{24 - 25}{30} )= (\dfrac{10 + 12}{15} )- \dfrac{ 5}{6}⟶. 32+( 30

24−25)=( 1510+12 )− 65

\longrightarrow \sf \: \dfrac{2}{3} - \dfrac{1}{30} = \dfrac{22}{15} - \dfrac{ 5}{6}⟶

32 − 301

= 1522 − 65

\longrightarrow \sf \: \dfrac{20 -1}{30} = \dfrac{ 44 - 25}{30}⟶ 3020−1

= 3044−25

\longrightarrow \sf \red{ \dfrac{19}{30} = \dfrac{ 19}{30} }⟶ 3019

= 3019

Hence,Verified!

________________________________

2. Associative Property of Multiplication :

\longrightarrow \sf \: a \times( b \times c )=( a \times b) \times c⟶a×(b×c)=(a×b)×c

\longrightarrow \sf \: \dfrac{2}{3} \times( \dfrac{5}{6} \times \dfrac{4}{3}) =( \dfrac{2}{3} \times \dfrac{5}{6} ) \times \dfrac{4}{3}⟶

32 ×( 65 × 34 ). =( 32 × 65 )× 34

\longrightarrow \sf \: \dfrac{2}{3} \times \dfrac{20}{18} = \dfrac{10}{18} \times \dfrac{4}{3}⟶ 32× 1820

= 1810 × 34

\longrightarrow \sf \: \cancel\dfrac{40}{54} = \cancel\dfrac{40}{54}⟶

5440= 5440

\longrightarrow \sf \red{ \dfrac{20}{27} = \dfrac{ 20}{27} }⟶ 2720= 2720

Hence,Verified!

Similar questions