Accountancy, asked by simmi828592, 4 months ago

a b and c share profit and losses in the ratio of 6 : 5: 3 d is admitted to into partnership for 1/8 share the sacrificing ratio of a : b : c is
1) 6: 5 : 3
2) 5: 4: 3
3) equal
4) none of these

Answers

Answered by Sauron
64

Answer:

The Sacrificing Ratio :

Option 1) 6 : 5 : 3

a : b : c = 6 : 5 : 3

Explanation:

Solution :

Old Ratio :

a : b : c = 6 : 5 : 3

  • a's Share =  \dfrac{6}{14}

  • b's Share =  \dfrac{5}{14}

  • c's Share =  \dfrac{3}{14}

d is admitted to into partnership for 1/8 Share

Let,

Total profit Share = 1

  • d's Share =  \dfrac{1}{8}

Remaining Share =

1 -  \dfrac{1}{8}  =  \dfrac{7}{8}

a's New Share =

\longrightarrow \:  \dfrac{7}{8}   \: \times \:   \dfrac{6}{14}

\longrightarrow \:  \dfrac{42}{112}

b's New Share =

\longrightarrow \:  \dfrac{7}{8}  \:  \times  \:  \dfrac{5}{14}

\longrightarrow \:  \dfrac{35}{112}

c's New Share =

\longrightarrow \:  \dfrac{7}{8}  \:  \times  \:  \dfrac{3}{14}

\longrightarrow \:  \dfrac{21}{112}

d's Share =

\longrightarrow \:  \dfrac{1}{8}  \:  =  \:  \dfrac{14}{112}

New Profit Sharing Ratio :

  • a : b : c : d

  •  \dfrac{42}{112}  :  \dfrac{35}{112}  :  \dfrac{21}{112}  :  \dfrac{14}{112}

The Sacrificing Ratio :

Sacrificing Ratio = Old Ratio - New Ratio

a's Sacrifice =

\longrightarrow \: \dfrac{6}{14}  \:  -  \:  \dfrac{42}{112} \:  =  \:  \dfrac{6}{112}

b's Sacrifice =

\longrightarrow \:  \dfrac{5}{14}  \:  -  \:  \dfrac{35}{112}  \:  =  \:  \dfrac{5}{112}

c's Sacrifice =

\longrightarrow \:  \dfrac{3}{14}  \:  -  \:  \dfrac{21}{112}  \:  =  \:  \dfrac{3}{112}

The Sacrificing Ratio =

  • a : b : c

  •  \dfrac{6}{112}  :  \dfrac{5}{112}  :  \dfrac{3}{112}

Therefore,

The Sacrificing Ratio :

Option 1) 6 : 5 : 3

a : b : c = 6 : 5 : 3

Answered by Anonymous
110

Answer:

Given :-

  • a , b , c and d share profit and losses in the ratio of 6 : 5 : 3 is admitted to into partnership for ⅛ share.

To Find :-

  • What is the sacrificing ratio of a : b : c.

Solution :-

First, we have to find the old ratio of a's , b's and c's share.

Given :

\leadsto a : b : c = 6 : 5 : 3

Then,

\mapsto Share of a's :

\sf \dfrac{6}{6 + 5 + 3}

\sf\bold{\dfrac{6}{14}}

\mapsto Share of b's :

\sf \dfrac{5}{6 + 5 + 3}

\sf\bold{\dfrac{5}{14}}

\mapsto Share of c's :

\sf \dfrac{3}{6 + 5 + 3}

\sf\bold{\dfrac{3}{14}}

Again, given that, d is admitted to into partnership for ⅛ share then,

Let, the total profit share of d's be 1

\mapsto Share of d's :

\sf \dfrac{1}{8}

\longmapsto Remaining share of d's :

\sf 1 - \dfrac{1}{8}

\sf \dfrac{8 - 1}{8}

\sf\bold{\dfrac{7}{8}}

Now, we have to find the new share of a's , b's , c's and d's.

\mapsto New share of a's :

\sf \dfrac{6}{14} \times \dfrac{7}{8}

\sf \dfrac{6 \times 7}{14 \times 8}

\sf\bold{\dfrac{42}{112}}

\mapsto New share of b's :

\sf \dfrac{5}{14} \times \dfrac{7}{8}

\sf \dfrac{5 \times 7}{14 \times 8}

\sf\bold{\dfrac{35}{112}}

\mapsto New share of c's :

\sf \dfrac{3}{14} \times \dfrac{7}{8}

\sf \dfrac{3 \times 7}{14 \times 8}

\sf\bold{\dfrac{21}{112}}

\mapsto New share of d's :

\sf \dfrac{1}{8}

\sf\bold{\dfrac{14}{112}}

Now, as we know that,

\bigstar \: \boxed{\sf{Sacrificing\: Ratio =\: Old\: Ratio -\: New\: Ratio}}

\mapsto Sacrificing Ratio of a's :

\sf \dfrac{6}{14} - \dfrac{42}{112}

\sf \dfrac{48 - 42}{112}

\sf\bold{\red{\dfrac{6}{112}}}

\mapsto Sacrificing Ratio of b's :

\sf \dfrac{5}{14} - \dfrac{35}{112}

\sf \dfrac{40 - 35}{112}

\sf\bold{\red{\dfrac{5}{112}}}

\mapsto Sacrificing Ratio of c's :

\sf \dfrac{3}{14} - \dfrac{21}{112}

\sf \dfrac{24 - 21}{112}

\sf\bold{\red{\dfrac{3}{112}}}

Now, we have to find the sacrificing ratio :

\implies \sf a : b : c

\implies \sf \dfrac{6}{\cancel{112}} : \dfrac{5}{\cancel{112}} : \dfrac{3}{\cancel{112}}

\implies \sf\boxed{\bold{6 : 5 : 3}}

Hence, the correct options is option no 1) 6 : 5 : 3.

\therefore The sacrificing ratio of a : b : c is 6 : 5 : 3 .

Similar questions