Math, asked by joshikamala960, 9 months ago

a, B are the zeroes of x²+x+1
find a+B+ ab​

Answers

Answered by ksonakshi70
8

Answer:

p(x) = x {}^{2}  + x + 1 \\ x {}^{2}  + (1 + 1)x + 1 \\ x {}^{2}  + x + x + 1 \\ x(x +1 ) + 1(x + 1) \\ ( x + 1)(x + 1) \\ x + 1 = 0 \\ x =  - 1 \\ x + 1 = 0 \\ x =  - 1 \\ let \:  \alpha  \: and \:  \beta   \: be \: the \: zeos \: of \: p(x) \\ sum \: of \: zeros \:  =  \alpha  +  \beta  =  - 1 + ( - 1)  \\  \frac{ - b}{a}  =   \frac{ - 2}{1}  \\  \alpha  +  \beta  =  - 2 \: .........(i) \\ product \: of \: zeros \:  =  \alpha  \beta  \\  \frac{c}{a}  =  - 1 \times ( - 1)  \\  \alpha  \beta  = 1 \: ......(ii) \\ from \: i \: and \:  \: ii \\  \alpha  +  \beta  +  \alpha  \beta  =  - 2 + 1 =  - 1

Answered by ItzArchimedes
36

CORRECT QUESTION:

If α , β are the zeroes of the quadratic equation

f(x) = x² + x + 1 . Then find α + β + αβ

ANSWER:

METHOD 1:

Firstly finding α , β by quadratic equation formula

x = -b±b²-4ac/2a

→ x² + x + 1 = 0

Here , a = 1 , b = 1 , c = 1

x = - 1 ±√1² - 4(1)(1)/2(1)

x = -1±√1 - 4/2

x = -1±√-3/2

x = - 1 + √3(√-1)/2 or -1 - √3(-√1)/2

Using complex numbers

➳ √-1 = i

➳ -1 = i²

x = -1+√3 i/2 or -1 - √3i/2

Now,

α = √3i - 1 /2 , β = -√3i- 1/2

Finding : α + β + αβ

★ - 1 + √3i/2 + (- 1 -√3i/2 ) + (√3i-1/2)(-√3i - 1/2)

★ - 2/2 + (√3i - 1)(-√3i - 1)/4

★ - 1 + (-3i² - √3i + √3i + 1)/4

★ - 1 + 4/4

★ - 1 + 1

★ 0

METHOD 2 :

Using

Sum of roots (α + β) = -b/a

Product of roots (αβ) = c/a

Finding : α + β + αβ

♦ - b/a + c/a

♦ -1/1 + 1/1

♦ - 1 + 1

♦ 0

Hence, α + β + αβ = 0

Similar questions