Math, asked by priyabratapanda9696, 1 month ago

a/b + b/c + 1 + c/a + a/c + 1 + c/b + b/a + 1 factorise it

The 1st people who could answer this , I will mark his answer brainiest​

Answers

Answered by btsarmybts425
2

Answer:

hi oppa thank you

Step-by-step explanation:

hope it will help you

Attachments:
Answered by XxGoutamxX
0

\mathsf{\dfrac{a}{b} + \dfrac{b}{a} + \dfrac{b}{c} + \dfrac{c}{b} + \dfrac{c}{a} + \dfrac{a}{c} + 3}

\mathsf{= \dfrac{a}{b} + \dfrac{c}{b} + \dfrac{b}{c} + \dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{a} + 3}

\mathsf{= \dfrac{(a+c)}{b} + \dfrac{(b+a)}{c} + \dfrac{(b+c)}{a} + 3}

\mathsf{= \dfrac{(a+b+c-b)}{b} + \dfrac{(a+b+c-c)}{c} + \dfrac{(a + b + c -a)}{a} + 3}

\mathsf{= \dfrac{(a+b+c)}{a} - 1 +\dfrac{(a+b+c)}{b} - 1 + \dfrac{(a+b+c)}{c} - 1 + 3}

\mathsf{= \dfrac{(a+b+c)}{a} + \dfrac{(a+b+c)}{b} + \dfrac{(a+b+c)}{c}}

\mathsf{=(a+b+c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} )}

Similar questions