a^b=b^c=ab then b+c always equal
Attachments:
Answers
Answered by
13
Given,
taking log both sides,
we know,
so,
removing log from both sides,
similarly,
put value of b ,
b + c = bc
hence, b + c = bc
taking log both sides,
we know,
so,
removing log from both sides,
similarly,
put value of b ,
b + c = bc
hence, b + c = bc
Answered by
1
Given, a^b=b^c=abab=bc=ab
a^b=abab=ab
taking log both sides,
loga^b=logablogab=logab
we know, logAB=logA+logBlogAB=logA+logB
logA^B=BlogAlogAB=BlogA
so, bloga=loga+logbbloga=loga+logb
bloga-loga=logbbloga−loga=logb
(b-1)loga=logb(b−1)loga=logb
loga^{(b-1)}=logbloga(b−1)=logb
removing log from both sides,
a^{(b-1)}=ba(b−1)=b
similarly, b^c=abbc=ab
put value of b ,
(a^{(b-1)})^c=aa^{(b-1)}(a(b−1))c=aa(b−1)
a^{cb-c}=a^{(b-1)+1}acb−c=a(b−1)+1
bc - c = bbc−c=b
b + c = bc
hence, b + c = bc
a^b=abab=ab
taking log both sides,
loga^b=logablogab=logab
we know, logAB=logA+logBlogAB=logA+logB
logA^B=BlogAlogAB=BlogA
so, bloga=loga+logbbloga=loga+logb
bloga-loga=logbbloga−loga=logb
(b-1)loga=logb(b−1)loga=logb
loga^{(b-1)}=logbloga(b−1)=logb
removing log from both sides,
a^{(b-1)}=ba(b−1)=b
similarly, b^c=abbc=ab
put value of b ,
(a^{(b-1)})^c=aa^{(b-1)}(a(b−1))c=aa(b−1)
a^{cb-c}=a^{(b-1)+1}acb−c=a(b−1)+1
bc - c = bbc−c=b
b + c = bc
hence, b + c = bc
Similar questions