Math, asked by bhanu7500, 1 year ago

a^b=b^c=ab then b+c always equal

Attachments:

Answers

Answered by abhi178
13
Given, a^b=b^c=ab

a^b=ab

taking log both sides,

loga^b=logab

we know, logAB=logA+logB
logA^B=BlogA

so, bloga=loga+logb

bloga-loga=logb

(b-1)loga=logb

loga^{(b-1)}=logb

removing log from both sides,

a^{(b-1)}=b

similarly, b^c=ab

put value of b ,

(a^{(b-1)})^c=aa^{(b-1)}

a^{cb-c}=a^{(b-1)+1}

bc - c = b

b + c = bc

hence, b + c = bc
Answered by brainlyboytopper
1
Given, a^b=b^c=abab=bc=ab 

a^b=abab=ab 

taking log both sides, 

loga^b=logablogab=logab 

we know, logAB=logA+logBlogAB=logA+logB 
logA^B=BlogAlogAB=BlogA 

so, bloga=loga+logbbloga=loga+logb 

bloga-loga=logbbloga−loga=logb 

(b-1)loga=logb(b−1)loga=logb 

loga^{(b-1)}=logbloga(b−1)=logb 

removing log from both sides, 

a^{(b-1)}=ba(b−1)=b 

similarly, b^c=abbc=ab 

put value of b , 

(a^{(b-1)})^c=aa^{(b-1)}(a(b−1))c=aa(b−1) 

a^{cb-c}=a^{(b-1)+1}acb−c=a(b−1)+1 

bc - c = bbc−c=b 

b + c = bc 

hence, b + c = bc
Similar questions