a+b/b+c = c+d/d+a
prove that, c=a
a+b+c+d = 0
Answers
Answer:
Hope it will help
Step-by-step explanation:
1st Method:
(a+b)/(b+c)=(c+d)/(d+a)
Subtracting 1 from both sides.
(a+b)/(b+c) - 1 = (c+d)/(d+a). - 1
(a+b-b-c)/(b+c) = (c+d-d-a)/(d+a)
(a-c)/(b+c). = (-a+c)/(d+a)
(a-c)/(b+c)+(a-c)/(d+a)=0
(a-c) [ 1/(b+c)+1/(d+a)] = 0
Either. (a-c)=0 => a=c. Proved.
1/(b+c) + 1/(d+a). = 0
1/(b+c). = - 1/(d+a)
d+a= -b-c
a+b+c+d = 0. Proved
2nd Method:
(a+b)/(b+c) = (c+d)/(d+a).
(a+b)/(c+d)= (b+c)/(d+a).
Applying componendo and dividends.
(a+b+c+d)/(a+b-c-d) = (b+c+d+a)/(b+c-d-a).
(a+b+c+d)/(a+b-c-d) = - (a+b+c+d)/(a-b-c+d).
(a+b+c+d).[ 1/(a+b-c-d) + 1/(a-b-c+d)] = 0.
Either (a+b+c+d)=0.
1/(a+b-c-d) + 1/(a-b-c+d) = 0
1/(a+b-c-d) = -1/(a-b-c+d).
-a-b+c+d = a-b-c+d.
c+c = a+a.
2c = 2a
c = a. Proved.
hope it will be helpful for you