Math, asked by tasneem29, 1 year ago

A+b+c=0 find a2/bc+b2/ac+c2/ab

Answers

Answered by prettystefina11
2

Answer:

3

Step-by-step explanation:

Given;

a + b + c = 0

(a^2/bc) + (b^2)/ac + (c^2)/ab = (a^3 + b^3 + c^3)/abc

[We know that,

(a + b + c)^3 = a^3 + b^3 + c^3 + 3ab(a + b + c) + 3bc(a + b + c) + 3ac(a + b + c) - 3abc

So,

a^3 + b^3 + c^3 = (a + b + c)^3 - 3ab(a + b + c) - 3bc(a + b + c) - 3ac(a + b + c) + 3abc ]

(a^2/bc) + (b^2)/ac + (c^2)/ab = (a^3 + b^3 + c^3)/abc

= [(a + b + c)^3 - 3ab(a + b + c) - 3bc(a + b + c) - 3ac(a + b + c) + 3abc ]/abc

= [(0)^3 - 3ab(0) - 3bc(0) - 3ac(0) + 3abc ]/abc

= 3abc/abc

= 3

Answered by amitnrw
4

Answer:

a²/bc  + b²/ac  + c²/ab = 3

Step-by-step explanation:

A+b+c=0 find a2/bc+b2/ac+c2/ab

a²/bc  + b²/ac  + c²/ab

= (1/abc) (a³ + b³ + c³)

using ( a + b)³ = a³ + b³ + 3ab(a+b)

=(1/abc) ( (a+b)³ - 3ab(a+b) + c³)

a + b + c = 0 => a+b = -c

Putting value of a +b = - c

= (1/abc) ( (-c)³ - 3ab(-c) + c³)

(-c)³ = - (c)³

= (1/abc) ( -c³ + 3abc + c³)

= (1/abc) ( 3abc)

Cancelling abc  from numerator & denominator

= 3

Hence

a²/bc  + b²/ac  + c²/ab = 3

Similar questions