a+b+c=0 then (a4+b4+c4)/(a2+b2+c2)2
Answers
Answer:
Answer is 2
Step-by-step explanation:
a+b+c = 0
(a+b)² = (-c)²
a²+b²+2ab = c²
(a²+b²-c²)² = (-2ab)²
a⁴+b⁴+c⁴+2a²b²-2b²c²-2c²a² = 4a²b²
a⁴+b⁴+c⁴+2a²b²-4a²b²-2b²c²-2c²a² = 0
a⁴+b⁴+c⁴-2a²b²-2b²c²-2c²a²= 0
a⁴+b⁴+c⁴= 2a²b²+2b²c²+2c²a²
a⁴+b⁴+c⁴= 2(a²b²+b²c²+c²a²)
Substituting this value with a⁴+b⁴+c⁴/a²b²+b²c²+c²a²
We get,
2(a²b²+b²c²+c²a²)/ a²b²+b²c²+c²a² = 2
Answer:
Squaring on both sides of the relation,
= (a² + b² + c²)² = [-2(bc + ca + ab)²]
= 4 {b²c² + c²a² + a²b² + 2} {bc. ca + ca. ab + ab. bc}
= 4 (b²c² + c²a² + a²b²) + 8abc (a + b + c)
= 4 (b²c² + c²a² + a²b²),
∵ a + b + c = 0
∴ 2 (b²c² + c²a² + a²b²) = (a² + b² + c²)²
And also (a² + b² + c²)² = + 2 (b²c² + c²a² + a²b²),
⇒ 4 (b²c² + c²a² + a²b²) = + 2 (b²c² + c²a² + a²b²)
Hence, = 2 (b²c² + c²a² + a²b²)