a+b+c=0 then prove that
a^3+b^3+c^3=3abc
Answers
Answered by
17
If a+b+c=0
then a+b=-c
now cube both the sides i.e LHS n RHS
(a+b)^3=(-c)^3 (a+b)^3 = a^3+b^3+3ab(a+b)
a^3+b^3+3ab(a+b)=-c^3
now transpose -c^3 to LHS
a^3+b^3+c^3+3ab(a+b)=0
a^3+b^3+c^3+3ab(-c)=0 [reason: a+b = -c ]
a^3+b^3+c^3-3abc=0
now transpose -3abc to RHS
a^3+b^3+c^3=3abc
Thus proved a^3+b^3+c^3+3ab
then a+b=-c
now cube both the sides i.e LHS n RHS
(a+b)^3=(-c)^3 (a+b)^3 = a^3+b^3+3ab(a+b)
a^3+b^3+3ab(a+b)=-c^3
now transpose -c^3 to LHS
a^3+b^3+c^3+3ab(a+b)=0
a^3+b^3+c^3+3ab(-c)=0 [reason: a+b = -c ]
a^3+b^3+c^3-3abc=0
now transpose -3abc to RHS
a^3+b^3+c^3=3abc
Thus proved a^3+b^3+c^3+3ab
Saadhana:
Mark it as the best plz........ Plz
Answered by
8
By the formula,
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
=0*(a^2+b^2+c^2-ab+bc+ac)
=0
:. a^3+b^3+c^3=3abc
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
=0*(a^2+b^2+c^2-ab+bc+ac)
=0
:. a^3+b^3+c^3=3abc
Similar questions