Math, asked by dharamsothsowmya, 1 month ago

A+B+C=0° Sina+SinB +sinc=ksina/2 sinb/2sinc/2

then k is.

Answers

Answered by senboni123456
5

Answer:

Step-by-step explanation:

We have,

\tt{\mapsto\pink{A+B+C=0^{\circ}}}

Now,

\sf{sin(A)+sin(B)+sin(C)}

\sf{=sin(A)+2\,sin\left(\dfrac{B+C}{2}\right)\,cos\left(\dfrac{B-C}{2}\right)}

\sf{=-sin(B+C)+2\,sin\left(\dfrac{B+C}{2}\right)\,cos\left(\dfrac{B-C}{2}\right)}

\sf{=2\,sin\left(\dfrac{B+C}{2}\right)\,cos\left(\dfrac{B-C}{2}\right)-sin(B+C)}

\sf{=2\,sin\left(\dfrac{B+C}{2}\right)\,cos\left(\dfrac{B-C}{2}\right)-2\,sin\left(\dfrac{B+C}{2}\right)\,cos\left(\dfrac{B+C}{2}\right)}

\sf{=2\,sin\left(\dfrac{B+C}{2}\right)\left\{cos\left(\dfrac{B-C}{2}\right)-cos\left(\dfrac{B+C}{2}\right)\right\}}

\sf{=2\,sin\left(-\dfrac{A}{2}\right)\left\{cos\left(\dfrac{B}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{B}{2}+\dfrac{C}{2}\right)\right\}}

\sf{=-2\,sin\left(\dfrac{A}{2}\right)\left\{2\,sin\left(\dfrac{B}{2}\right)\,sin\left(\dfrac{C}{2}\right)\right\}}

\sf{=-4\,sin\left(\dfrac{A}{2}\right)\,sin\left(\dfrac{B}{2}\right)\,sin\left(\dfrac{C}{2}\right)}

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:A + B + C = 0}

and

\red{\rm :\longmapsto\:sinA + sinB + sinC = ksin\bigg[\dfrac{A}{2} \bigg]sin\bigg[\dfrac{B}{2} \bigg]sin\bigg[\dfrac{C}{2} \bigg]}

Let us consider,

\rm :\longmapsto\:sinA + sinB + sinC

\rm \:  =  \: (sinA + sinB) + sinC

\rm \:  =  \: 2sin\bigg[\dfrac{A + B}{2} \bigg]cos\bigg[\dfrac{A - B}{2} \bigg] + sinC

As it is given that,

\red{\rm :\longmapsto\:A + B + C = 0\rm \implies\:A + B =  - C}

Also, we know that

\red{\rm :\longmapsto\:sin2x = 2sinx \: cosx \: }

So, using this identity, we get

\rm \:  =  \: 2sin\bigg[\dfrac{ - C}{2} \bigg]cos\bigg[\dfrac{A - B}{2} \bigg] + 2sin\bigg[\dfrac{C}{2} \bigg]cos\bigg[\dfrac{C}{2} \bigg]

\rm \:  =  \:  - 2sin\bigg[\dfrac{C}{2} \bigg]cos\bigg[\dfrac{A - B}{2} \bigg] + 2sin\bigg[\dfrac{C}{2} \bigg]cos\bigg[\dfrac{C}{2} \bigg]

\rm \:  =  \: 2sin\bigg[\dfrac{C}{2} \bigg]\bigg( - cos\bigg[\dfrac{A - B}{2} \bigg] + cos\bigg[\dfrac{C}{2} \bigg]\bigg)

\rm \:  =  \: 2sin\bigg[\dfrac{C}{2} \bigg]\bigg( - cos\bigg[\dfrac{A - B}{2} \bigg] + cos\bigg[\dfrac{ - (A + B)}{2} \bigg]\bigg)

We know

\rm \:  =  \: 2sin\bigg[\dfrac{C}{2} \bigg]\bigg( - cos\bigg[\dfrac{A - B}{2} \bigg] + cos\bigg[\dfrac{A + B}{2} \bigg]\bigg)

\rm \:  =  -  \: 2sin\bigg[\dfrac{C}{2} \bigg]\bigg(cos\bigg[\dfrac{A - B}{2} \bigg]  -  cos\bigg[\dfrac{A + B}{2} \bigg]\bigg)

We know,

\boxed{ \tt{ \: cos(x - y) - cos(x + y) = 2sinx \: siny \: }}

So, using this identity, we get

\rm \:  =  \:  - 2sin\bigg[\dfrac{C}{2} \bigg]\bigg(2sin\bigg[\dfrac{A}{2} \bigg]sin\bigg[\dfrac{B}{2} \bigg]\bigg)

\rm \:  =  \:  - 4 \: sin\bigg[\dfrac{A}{2} \bigg]sin\bigg[\dfrac{B}{2} \bigg]sin\bigg[\dfrac{C}{2} \bigg]

So, we have

\boxed{ \sf{sinA+sinB+sinC =- 4 sin\bigg[\dfrac{A}{2} \bigg]sin\bigg[\dfrac{B}{2} \bigg]sin\bigg[\dfrac{C}{2} \bigg]}}

Hence,

\rm \implies\:\boxed{ \tt{ \: k \:  =  \:  -  \: 4 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\boxed{ \tt{ \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: cosx  -  cosy = -  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: 2sinxcosy = sin(x + y) + sin(x - y) \: }}

\boxed{ \tt{ \: 2cosx \: cosy = cos(x + y) + cos(x - y) \: }}

Similar questions
Math, 1 month ago