Math, asked by shreeyasahoo123, 4 months ago

a+b+c = 1 a²+b²+c² = 9 a³+b³+c³ = 1
Find 1/a + 1/b + 1/c

Answers

Answered by suhail2070
1

Answer:

answer. 1

Step-by-step explanation:

a + b + c = 1 \\  \\  {a}^{2}  +  {b}^{2}  +  {c }^{2}  = 9 \\  \\  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 1 \\  \\  {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\  {1}^{2}  = 9 + 2(ab + bc + ca) \\ 1 - 9 = 2(ab + bc + ca) \\  \\  ab + bc + ca =  -  \frac{8}{2}  =  - 4 \\  \\   \\  \\  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2} +  {b}^{2}  +  {c}^{2}   - ab  - bc - ca) \\  \\ 1 - 3abc = 1(9 - ( - 4)) \\  \\ 1 - 3abc = 13 \\ -  3abc = 13 - 1 \\  \\  - 3abc = 12 \\  \\ abc =  - 4 \\  \\ now \:  \:  \:  \:  \:  \: \frac{ ab + bc + ca }{abc}  =  \frac{ - 4}{  - 4}  \\  \\  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c}  = 1

Similar questions