A+B+C=1 prove that cotAcotC+cotC. CotA+cotA. CotB=2
Answers
Answered by
1
Answer:
In ΔABC , A+B+C=180
∘
⟹A+B=180
∘
−C
⟹cot(A+B)=cot(180
∘
−C)
⟹
cotA+cotB
cotA.cotB−1
=−cotC
⟹cotA.cotB−1=−cotA.cotC−cotB.cotC
⟹cotA.cotB+cotB.cotC+cotC.cotA=1
Similar questions