a + b + c = 11 ; a^2 + b^2 + c^2 = 81 find: ab + bc + ca
Answers
Answered by
6
In the above Question , the following information is given -
a + b + c = 11 and a² + b² + c² = 81
To find -
Find the value of ab + bc + ac .
Solution -
Here ,
a + b + c = 11
Squaring both sides ,
( a + b + c )² = ( 11 )²
=> ( a + b + c )² = 121
=> a² + b² + c² + 2 ( ab + bc + ac ) = 121
Now ,
a² + b² + c² = 81 .
So,
=> a² + b² + c² + 2 ( ab + bc + ac ) = 121
=> 81 + 2 ( ab + bc + ac ) = 121
=> 2 ( ab + bc + ac ) = 40
=> ab + bc + ac = 20.
Thus , the required value of ab + bc + ac is 20 .
This is the answer .
____________________________________________
Similar questions