a+b+c=12 and a2+b2+c2=64 find the value of ab+bc+ac
Answers
Answered by
6
Answer:
Step-by-step explanation:
(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca (formula)
(a+b+c)^2 = a^2 + b^2+ c^2 + 2(ab+bc+ca)
12^2= 64+2(ab+bc+ca) ( Substituting the given values)
144= 64+2(ab+bc+ ca)
144–64 = 2(ab+bc+ca) (solving)
80= 2(ab+bc+ ca)
80/2 = ab+bc+ca
40 = ab+ bc+ ca
Ans: 40
Answered by
2
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac
Similar questions
Social Sciences,
6 months ago
Social Sciences,
6 months ago
English,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago