Math, asked by nanms2766, 1 year ago

a+b+c=12 and ab+bc+ca=22 find a2+b2+c2

Answers

Answered by Anonymous
22

GIVEN :

a+b+c=12

ab+bc+ca=22

a^2+b^2+c^2=?

We know that

(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ba)

(12)^2=a^2+b^2+c^2+2(22)

144=a^2+b^2+c^2+44

144-44=a^2+b^2+c^2

100=a^2+b^2+c^2

Answered by talasilavijaya
3

Answer:

a^2+b^2+c^2=100

Step-by-step explanation:

Given the equations a+b+c=12 and ab+bc+ca=22

To solve (a+b+c)^2

consider the algebraic identity,

(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ba)

Substituting the given values in the above identity

(12)^2=a^2+b^2+c^2+2(22)

Opening the brackets,

\implies 144=a^2+b^2+c^2+44

Rearranging the terms, to solve for a^2+b^2+c^2,

\implies a^2+b^2+c^2=144-44

\implies a^2+b^2+c^2=100

Therefore, a^2+b^2+c^2=100.

Similar questions