a+b+c=15,a^2+b^2+c^2=83 find the value of a^3+b^3+c^3-3abc
Answers
Answered by
0
you can also screch Google
Answered by
1
Answer:
180
Step-by-step explanation:
a^3+b^3+c^3-3abc= (a+b+c) (a^2 + b^2 + c^2 - ab - bc - ac)........(i);
a+b+c=15;
=>(a+b+c)^2=15^2
=>(a + b + c) 2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
=>225=83+2(ab+bc+ca)
=>(83-225)/2= -ab-bc-ca
=>-142/2=-ab-bc-ca
=>-ab-bc-ca= -71
Thus substituting the values in (i).. we get,
a^3+b^3+c^3-3abc = 15(83-71)
=>a^3+b^3+c^3-3abc=15*12
=>a^3+b^3+c^3-3abc=180
thus 180 is the ans.
Similar questions