Math, asked by sathyapriya1998ks, 2 months ago

a+b+c =15 ab+bc+ca=25 find the value of a^2+b^2+c^2=?​

Answers

Answered by minakshi987
1

Answer:

Answer:

(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)

152 = a^2 + b^2 + c^2 + 2(25)

225 = a^2 + b^2 + c^2 + 50

a^2 + b^2 + c^2 = 225 - 50

a^2 + b^2 + c^2 = 175

Answered by Anonymous
3

Answer:

175

Step-by-step explanation:

Solution:--

given \:  \: a + b + c = 15 \\ ab + bc + ca = 25 \\ we \: know \: that \: { ( a + b + c)}^{2}  =  {a }^{2} +  {b}^{2}   +  {c}^{2}  + 2(ab + bc + ca) \\  =  > ( {15})^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(25) \\  =  > 225 =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 50 \\  =  >  {a}^{2}  +   {b}^{2}  +  {c}^{2}  + = 225 - 50 \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 175 \:  \:  \:  \: ans.

Similar questions