A+b+c= 15 and a 2 + b 2 +c 2 =83, find the value of a 3 +b 3 +c 3 -3abc ?
Answers
Answered by
1
-(ab+bc+ca)=71
a^3+b^3+c^3-3abc=2310
a^3+b^3+c^3-3abc=2310
Answered by
2
Answer:
180
Step-by-step explanation:
A+b+c= 15 and a 2 + b 2 +c 2 =83, find the value of a 3 +b 3 +c 3 -3abc
Consider the formula - a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
We have to find ab+bc+ca
given a+b+c = 15
Squaring on both sides we get,
(a+b+c)² = 15²
a²+b²+c² + 2(ab+bc+ca) = 225
2 (ab+bc+ca) = 142
ab + bc + ca = 71
Now, a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
Putting the values we get
15(83-71)
15×12
180
Similar questions