a+b+c=18 and a^+b^+c 2 =24 find the value of a^3+b^3+c^3-3abc
Answers
Answered by
0
Answer:
a^3+ b^3 + c^3 - 3abc = (a+b+c)(a^2+ b^2+c^2 -ab-bc-ca)
a^3+ b^3 + c^3 - 3abc = (a+b+c){a^2+ b^2+c^2-(ab+bc+ca)}
a^3+ b^3 + c^3 - 3abc = 18 × 24-(ab+bc+ca)
finding the value of ab+bc+ca
a+b+c =18
squaring both sides
( a+b+c) ^2 = 324
a^2+ b^2+c^2 +2ab +2bc +2ca =324
a^2+ b^2+c^2 + 2(ab +bc + ca) = 324
24 + 2(ab +bc + ca)= 324
2(ab +bc + ca)= 324-24=300
ab +bc +ca = 300/2= 150
Now putting the value
a^3+ b^3 + c^3 - 3abc = 18 × 24-(ab+bc+ca)
a^3+ b^3 + c^3 - 3abc = 18 × 24- 150
a^3+ b^3 + c^3 - 3abc = 432-150
a^3+ b^3 + c^3 - 3abc = 282
Similar questions