a+b+c=2 a^2+b^2+c^2=6 a^3+b^3+c^3=8 a^4+b^4+c^4=
Answers
Answered by
3
Answer: 2(ab+bc+ca)=(a+b+c)2−(a2+b2+c2)
⇒2(ab+bc+ca)=12−2=−1
⇒ab+bc+ca=−12
given
a3+b3+c3=3
⇒a3+b3+c3−3abc+3abc=3
⇒(a+b+c)(a2+b2+c2−ab−bc−ca)+3abc=3
⇒(a+b+c)(a2+b2+c2−(ab+bc+ca)+3abc=3
⇒(1×(2−(−12)+3abc))=3
⇒(2+12)+3abc=3
⇒3abc=3−52=12
⇒abc=16
Now
(a2b2+b2c2+c2a2)
=(ab+bc+ca)2−2ab2c−2bc2a−2ca2b
=(ab+bc+ca)2−2abc(b+c+a)
=(−12)2−2×16×1=14−13=−112
Now
a4+b4+c4
=(a2+b2+c2)2−2(a2b2+b2c2+c2a2)
=22−2×(−112)
=4+16=416
Extension
a5+b5+c5
=(a3+b3+c3)(a2+b2+c2)−[a3(b2+c2)+b3(c2+a2)+c3(a2+c2)]
=3⋅2−[a3(b2+c2)+b3(c2+a2)+c3(a2+b2)]
Now
a3(b2+c2)+b3(c2+a2)+c3(a2+b2)
=a2b2(a+b)+b2c2(b+c)+c2a2(a+c)
=a2b2(1−c)+b2c2(1−a)+c2a2(1−b)
=a2b2+b2c2+c2a2−(a2b2c+b2c2a+c2a2b)
=−112−abc(ab+bc+ca)
=−112−16⋅(−12)=0
So
a5+b5+c5=6−0=6
please mark brainliest
Similar questions