Math, asked by chansasuke981, 5 months ago

(a+b+c) ^2-(a-b+c)^2​

Answers

Answered by bhavadharini0
1

Step-by-step explanation:

Solution:-

(a + b + c) {}^{2}  - (a - b + c) {}^{2}  \\  = ( {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca) - ( {a}^{2}  + ( - b) {}^{2}   +  {c}^{2}  + 2a( - b) + 2( - b)c + 2ca) \\  = ( {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca) -( {a}^{2}  +  {b}^{2}   +  {c}^{2}  - 2ab - 2bc + 2ca) \\  = {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca -  {a}^{2}  -  {b}^{2}  -  {c}^{2}  + 2ab + 2bc - 2ca \\  = 4ab + 4bc \\ the \: formula \: used \: here \: is \\ (x + y + z) {}^{2}  =  {x}^{2}  +  {y}^{2} +   {z}^{2}  + 2xy + 2yz + 2zx

Answered by rakhi9072
0

This equation is of the form

×^2-y^2=(×+y(×-y)

If we apply this formula for the equation we get

=(a+b+c)^2-(a+b+c)^2

=(a+b+c+a-b-c){a+b+c-(a-b-c)}

=(2a)(a+b+c-a+b+c)

=(2a)(2b+2c)

=4ab-4ac

Similar questions