a+b+c=20, ab+BC+ca=150, find value of a^2+b^2+c^2
Answers
Answer:
100
Step-by-step explanation:
Given-----> a + b + c = 20 , ab + bc + ca = 150
To find-----> a² + b² + c² = ?
Solution-----> ATQ,
a + b + c = 20 , ab + bc + ca = 150
We know that ,
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
=> ( a + b + c )² = ( a² + b² + c² ) + 2 ( ab + bc + ca )
Putting ( a + b + c ) = 20 and ab + bc + ca = 150 , in it , we get,
=> ( 20 )² = ( a² + b² + c² ) + 2 ( 150 )
=> 400 = ( a² + b² + c² ) + 300
=> 400 - 300 = ( a² + b² + c² )
=> 100 = ( a² + b² + c² )
=> a² + b² + c² = 100
Additional information ------>
1) ( a + b )² = a² + b² + 2ab
2) ( a - b )² = a² + b² - 2ab
3) ( a + b )³ = a³ + b³ + 3ab ( a + b )
4) ( a - b )³ = a³ - b³ - 3ab ( a - b )
5) ( a³ - b³ ) = ( a - b ) ( a² + b² + ab )
6) ( a³ + b³ ) = ( a + b ) ( a² + b² - ab )
7) ( a² - b² ) = ( a + b ) ( a - b )
Question a+b+c=20, ab+BC+ca=150, find value of a^2+b^2+c^2
Solution
Given : 1) a+b+c=20
2) ab+bc+ca
To find : value of
I d e n t I t y u s e d :
hence we got
{a}^{2} + {b}^{2} + {c}^{2} = 100
Thanks