Math, asked by nabhsjsjs5038, 1 month ago

A+B+C=3π/2,prove that cos2A+cos2B+cos2C=1-4 sinA sinB sinC

Answers

Answered by Mathkeeper
2

Step-by-step explanation:

We have,

 \tt{A + B + C =  \dfrac{3\pi}{2} }

Now,

 \sf{ cos(2A) + cos (2B) + cos(2C) }

 \sf{  = 2cos \bigg( \dfrac{2A + 2B}{2} \bigg) cos \bigg( \dfrac{2A  - 2B}{2} \bigg) + cos(2C) }

 \sf{  = 2cos(A + B) cos ( A  - B) + cos(2C) }

 \sf{  = 2cos \bigg(  \dfrac{3\pi}{2} - C \bigg) cos ( A  - B) +1 -  2sin^{2} (C)  }

 \sf{  =1  -  2sin(  C ) cos ( A  - B) -  2sin^{2} (C)  }

 \sf{  =1  -  2sin(  C ) \{ cos ( A  - B)  + sin (C)  \} }

 \sf{  =1  -  2sin(  C )  \bigg\{ cos ( A  - B)  + sin  \bigg( \dfrac{3\pi}{2} -  (A + B)\bigg)  \bigg \}  }

 \sf{  =1  -  2sin(  C )  \{ cos ( A  - B)   -  cos  (A + B)   \}  }

 \sf{  =1  -  2sin(  C )  \cdot 2sin ( A  )   sin  ( B)     }

 \sf{  =1  -   4sin ( A  )   sin  ( B)  sin(  C )  }

Similar questions