Math, asked by sulekhasah1982, 9 months ago

a+b+c=3 ,a^2+b^2+c^2=13 and a^3+b^3+c^3=27 ,then value of 1/a+1/b+1/c is

Answers

Answered by shadowsabers03
9

Given:-

  • \sf{a+b+c=3\quad\quad\dots(1)}

  • \sf{a^2+b^2+c^2=13\quad\quad\dots(2)}

  • \sf{a^3+b^3+c^3=27\quad\quad\dots(3)}

To find:-

  • \sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\,?}

Formulas used:-

  • \sf{(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\quad\quad\dots(i)}

  • \sf{(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))=a^3+b^3+c^3-3abc\quad\quad\dots(ii)}

Solution:-

Consider the equation \sf{(1).}

\displaystyle\longrightarrow\sf{a+b+c=3}

Square both sides,

\displaystyle\longrightarrow\sf{(a+b+c)^2=3^2}

Expand LHS according to the formula \sf{(i).}

\displaystyle\longrightarrow\sf{a^2+b^2+c^2+2(ab+bc+ca)=9}

Perform substitution from \sf{(2).}

\displaystyle\longrightarrow\sf{13+2(ab+bc+ca)=9}

\displaystyle\Longrightarrow\sf{ab+bc+ca=-2\quad\quad\dots(4)}

Consider the formula \sf{(ii).}

\displaystyle\longrightarrow\sf{(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))=a^3+b^3+c^3-3abc}

Perform substitutions from \sf{(1),\ (2),\ (3)} and \sf{(4).}

\displaystyle\longrightarrow\sf{3(13-(-2))=27-3abc}

\displaystyle\longrightarrow\sf{45=27-3abc}

\displaystyle\Longrightarrow\sf{abc=-6\quad\quad\dots(5)}

Now we have,

\displaystyle\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{ab+bc+ca}{abc}}

From \sf{(4)} and \sf{(5),}

\displaystyle\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{-2}{-6}}

\displaystyle\longrightarrow\underline{\underline{\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}=\bf{\dfrac{1}{3}}}}

Hence \bf{\dfrac{1}{3}} is the answer.

Answered by Rohit18Bhadauria
12

Given:

a+b+c= 3

a²+b²+c²= 13

a³+b³+c³= 27

To Find:

✏ Value of \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}

Solution:

We know that,

\leadsto\sf{(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)}

\leadsto\sf{a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))}

Now,

\sf{(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)}

\sf{(3)^{2}=13+2(ab+bc+ca)}

\sf{9=13+2(ab+bc+ca)}

\sf{9-13=2(ab+bc+ca)}

\sf{2(ab+bc+ca)=9-13}

\sf{2(ab+bc+ca)=-4}

\sf{ab+bc+ca=\dfrac{-\cancel{4}}{\cancel{2}}}

\sf{ab+bc+ca=-2}------(1)

Now,

\sf{a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))}

\sf{27-3abc=(3)(13-(-2))}

\sf{27-3abc=(3)(13+2)}

\sf{27-3abc=(3)(15)}

\sf{27-3abc=45}

\sf{-3abc=45-27}

\sf{-3abc=18}

\sf{abc=\dfrac{\cancel{18}}{-\cancel{3}}}

\sf{abc=-6}-----------(2)

Also,

\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{bc+ca+ab}{abc}}

\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{ab+bc+ca}{abc}}

From (1) and (2),

\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\cancel{-2}}{\cancel{-6}}}

\pink{\boxed{\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3}}}}

Hence, the value of \bf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}} is \green\dfrac{1}{3}.

Similar questions