(a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a) prove
Answers
Answered by
0
Answer:
Step-by-step explanation:
We are given to prove the following:
(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3abc).
We will be using the following cubic formula in the proof:
(a+b)^3=a^3+b^3+3a^2b+3ab^2.
We have
L.H.S.\\\\=(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)\\\\=a^3+b^3+3a^2b+3ab^2+b^3+c^3+3b^2c+3bc^2+c^3+a^3+3c^2a+3ca^2-3(ab+ac+b^2+bc)(c+a)\\\\=2a^3+2b^3+2c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2-3abc-3ac^2-3b^2c-3bc^2-3a^2b-3a^2c-3ab^2-3abc\\\\=2a^3+2b^3+2c^3-6abc\\\\=2(a^3+b^3+c^3-3abc)\\\\=R.H.S.
Hence proved.
Answered by
1
Step-by-step explanation:
plzz give me brainliest ans and plzzzz follow me
Attachments:
Similar questions