Math, asked by tanishka1228, 11 months ago

(a+b+c)³-a³-b³-c³=3(a+b)(b+c)(c+a)​

Answers

Answered by yashdeep945
1

(a+b+c)³-a³-b³-c³=3(a+b)(b+c)(c+a)

a+b+c)³-a³-b³-c³

=(a+b)³+3(a+b)²c+3(a+b)c²+c³-a³-b³-c³

=a³+3a²b+3ab²+b³+3(a²+2ab+b²)c+3ac²+3bc²+c³-a³-b³-c³

=3a²b+3ab²+3a²c+6abc+3b²c+3ac²+3bc²

=3(2abc+a²b+ab²+a²c+ac²+b²c+bc²)

3(a+b)(b+c)(c+a)

∴, LHS=RHS (Proved)

Similar questions