a+b+c=4
a2+b2+c2=10
a3+b3+c3=22
a4+b4+c4= ?
Answers
Answer:
Given :
a+b+c=4,
a²+b²+c²=10,
a³+b³+c³ = 22
To Find : a⁴+b⁴+c⁴=?
Solution:
a+b+c=4
Squaring both sides
=> a²+b²+c² + 2(ab + bc + ca) = 16
=> 10 + 2(ab + bc + ca) = 16
=> ab + bc + ca = 3
a³+b³+c³ - 3abc = (a + b + c)(a²+b²+c² - ( ab + bc + ca))
=> 22 - 3abc = (4)(10 - 3)
=> 22 - 3abc = 28
=> 3abc = - 6
=> abc = - 2
ab + bc + ca = 3
Squaring both sides
=> (ab)² + (bc)² + (ac)² + 2(ab.bc + ab.ca + bc.ca) = 9
=> (ab)² + (bc)² + (ac)² + 2abc(a + b + c) = 9
=> (ab)² + (bc)² + (ac)² + 2(-2)(4) = 9
=> (ab)² + (bc)² + (ac)² = 25
=> a²b² + b²c² + a²c² = 25
a²+b²+c²=10
squaring both sides
=> a⁴ + b⁴ + c⁴ + 2( a²b² + b²c² + a²c²) = 100
=> a⁴ + b⁴ + c⁴ + 2( 25) = 100
=> a⁴ + b⁴ + c⁴ + 50 = 100
=> a⁴ + b⁴ + c⁴ = 50
Step-by-step explanation:
hope this helps! PLEASE MARK ME AS THE BRAINLIEST
Answer:
Given :
a+b+c=4,
a²+b²+c²=10,
a³+b³+c³ = 22
To Find : a⁴+b⁴+c⁴=?
Solution:
a+b+c=4
Squaring both sides
=> a²+b²+c² + 2(ab + bc + ca) = 16
=> 10 + 2(ab + bc + ca) = 16
=> ab + bc + ca = 3
a³+b³+c³ - 3abc = (a + b + c)(a²+b²+c² - ( ab + bc + ca))
=> 22 - 3abc = (4)(10 - 3)
=> 22 - 3abc = 28
=> 3abc = - 6
=> abc = - 2
ab + bc + ca = 3
Squaring both sides
=> (ab)² + (bc)² + (ac)² + 2(ab.bc + ab.ca + bc.ca) = 9
=> (ab)² + (bc)² + (ac)² + 2abc(a + b + c) = 9
=> (ab)² + (bc)² + (ac)² + 2(-2)(4) = 9
=> (ab)² + (bc)² + (ac)² = 25
=> a²b² + b²c² + a²c² = 25
a²+b²+c²=10
squaring both sides
=> a⁴ + b⁴ + c⁴ + 2( a²b² + b²c² + a²c²) = 100
=> a⁴ + b⁴ + c⁴ + 2( 25) = 100
=> a⁴ + b⁴ + c⁴ + 50 = 100
=> a⁴ + b⁴ + c⁴ = 50
Step-by-step explanation: