A+B+C=5 AB+BC+CA=16 PROVE A^3+B^3+C^3-3ABC=25
Answers
Correct Question :-
If a + b + c = 5, ab + bc + ca = 16. Prove a³ + b³ - 3abc = -115
Solution :-
a + b + c = 5
ab + bc + ca = 16
First find the value of a² + b² + c²
We know that
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Here
• a + b + c = 5
• ab + bc + ca = 16
By substituting the values in the udentity
(5)² = a² + b² + c² + 2(16)
25 = a² + b² + c² + 32
25 - 32 = a² + b² + c²
- 7 = a² + b² + c²
a² + b² + c² = - 7
We know that
a³ + b³ + c³ - 3abc = (a + b + c){a² + b² + c² - (ab + bc + ca)}
Here
• a + b + c = 5
• a² + b² + c² = - 7
• ab + bc + ca = 16
By substituting the values
a³ + b³ + c³ - 3abc = (5){- 7 - (16)}
a³ + b³ + c³ - 3abc = 5(- 7 - 16)
a³ + b³ + c³ - 3abc = 5(-23)
a³ + b³ + c³ - 3abc = - 115
Hence proved
Questions—
a + b + c = 5, ab + bc + ca = 16. Prove a³ + b³ - 3abc = -115
Given—
✴ a + b + c = 5
✴ ab + bc + ca = 16
We know,
a² + b² + c² + 2(ab + bc + ca) = (a + b + c)²
Finding
a² + b² + c² to put in above Formula
A/Q
✴ a + b + c = 5
✴ ab + bc + ca = 16
Substitue the value
=> a² + b² + c² + 2(16) = (5)²
=>a² + b² + c² + 32 = 25
=> a² + b² + c² = 25 - 32
=>a² + b² + c² = - 7
We know,
a³ + b³ + c³ - 3abc = (a + b + c){a² + b² + c² - (ab + bc + ca)}
✴ a + b + c = 5
✴ a² + b² + c² = - 7
✴ ab + bc + ca = 16
Let substitute the values—
a³ + b³ + c³ - 3abc = (5){- 7 - (16)}
a³ + b³ + c³ - 3abc = 5(- 7 - 16)
a³ + b³ + c³ - 3abc = 5(-23)
a³ + b³ + c³ - 3abc = - 115
Therefore. It is proved
☺☺☺BE_STARS☺☺☺✨