a+b+c= 5 and ab +bc+ca =10 prove that a3+b3+c3 = - 25+ 3abc
Answers
Answered by
31
Given that,
a + b + c = 5
Let's sqaure both sides
=> (a + b + c)² = (5)²
=> a² + b² + c² + 2(ab + bc + ca) = 25
[Using the identity]
=> a² + b² + c² + 2(10) = 25
[Since it's given that ab + bc + ca = 10)
=> a² + b² + c² + 20 = 25
=> a² + b² + c² = 25 - 20
=> a² + b² + c² = 5
Now we know that
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Since ab + bc + ca = 10
=> -ab - bc - ca = - 10
So put the values.
=> a³ + b³ + c³ - 3abc = (5)(5 - 10)
=> a³ + b³ + c³ - 3abc = 5(-5)
=> a³ + b³ + c³ - 3abc = -25
=> a³ + b³ + c³ = - 25 + 3abc.
:) Proved.
a + b + c = 5
Let's sqaure both sides
=> (a + b + c)² = (5)²
=> a² + b² + c² + 2(ab + bc + ca) = 25
[Using the identity]
=> a² + b² + c² + 2(10) = 25
[Since it's given that ab + bc + ca = 10)
=> a² + b² + c² + 20 = 25
=> a² + b² + c² = 25 - 20
=> a² + b² + c² = 5
Now we know that
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Since ab + bc + ca = 10
=> -ab - bc - ca = - 10
So put the values.
=> a³ + b³ + c³ - 3abc = (5)(5 - 10)
=> a³ + b³ + c³ - 3abc = 5(-5)
=> a³ + b³ + c³ - 3abc = -25
=> a³ + b³ + c³ = - 25 + 3abc.
:) Proved.
Mankuthemonkey01:
Oh Thanks
Answered by
27
Similar questions