Math, asked by nammanshukla345, 1 year ago

A+b+c=5 nad ab+bc+ca=10 , then find the value of a3+b3+c3-3abc

Answers

Answered by Anonymous
147
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)

(5)²=a²+b²+c²+2(10)

25=a²+b²+c²+20

a²+b²+c²=5

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)

=(5)(5-10)

=(5)(-5)

=-25

Anonymous: please brainliest
Anonymous: mark it as brainliest
Answered by tanvigupta426
1

Answer:

The correct answer is &a^{3}+b^{3}+c^{3}-3 a b c=-25.

Step-by-step explanation:

A binomial expansion exists as a technique used to allow us to expand and simplify algebraic expressions in the form into a totality of terms of the form.

The binomial theorem specifies the expansion of any power (a + b)^{m} of a binomial (a + b) as a certain sum of products a^{i} b^{j}, such as (a + b)^{2}  = a^{2}  + 2ab + b^{2}.

Step 1

We have,

&a+b+c=5 \\

&a b+b c+c a=10

Since,

&(a+b+c)^{2}=25 \\

&a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=25 \\

Substituting the values in the above equation,

&a^{2}+b^{2}+c^{2}+2 \times 10=25 \\

&a^{2}+b^{2}+c^{2}=5

Step 2

We know that,

&a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right) \\

Substituting the values in the above equation,

&a^{3}+b^{3}+c^{3}-3 a b c=(5) \times(5-10) \\

&a^{3}+b^{3}+c^{3}-3 a b c=5 \times-5 \\

&a^{3}+b^{3}+c^{3}-3 a b c=-25

Therefore, the correct answer is &a^{3}+b^{3}+c^{3}-3 a b c=-25.

#SPJ2

Similar questions