a+b+c=6,ab+bc+ca=11,thena^3+b^3+c^3-3abc=?
Answers
Answered by
7
Hi friend, Harish here.
Here is your answer:
Given that,
a + b + c = 6. & ab + bc + ca = 11
To find,
a³ + b³ + c³ - 3abc .
Solution,
We know that,
[Square on both sides]
Then,
⇒
[Now substitute the value of ab+bc +ca]
Then,
⇒
⇒
We know that,
⇒
Therefore the value is 18.
_______________________________________________
Hope my answer is helpful to you
Here is your answer:
Given that,
a + b + c = 6. & ab + bc + ca = 11
To find,
a³ + b³ + c³ - 3abc .
Solution,
We know that,
[Square on both sides]
Then,
⇒
[Now substitute the value of ab+bc +ca]
Then,
⇒
⇒
We know that,
⇒
Therefore the value is 18.
_______________________________________________
Hope my answer is helpful to you
Answered by
3
Hello friends!! Cutiepie Here..
Here is ur answer :
Given :
a + b + c = 6
ab + bc + ca = 11
To find :
a³ + b³ + c³ - 3abc
Solution :
Using identity : a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca)
a³ + b³ + c³ - 3abc = ( a + b + c ) [a² + b² + c² - (ab + bc + ca)]
We haven't know the value of a² + b² + c²
So, we have to find it.
Identity :
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
( a + b + c)² = a² + b² + c² + 2 ( ab + bc + ca)
Now, put all the values.
( 6 )² = a² + b² + c² + 2 ( 11 )
36 = a² + b² + c² + 22
a² + b² + c² = 36 - 22
a² + b² + c² = 14
Now, we have all the values used in eqⁿ (1)
That is, a + b + c
a² + b² + c²
ab + bc + ca
So. Put these values in eqⁿ (1)
a³ + b³ + c³ - 3abc
= ( 6 ) ( 14 - 11 )
= ( 6 ) ( 3 )
= 18
Answer is 18.
HOPE IT HELPS YOU..
Here is ur answer :
Given :
a + b + c = 6
ab + bc + ca = 11
To find :
a³ + b³ + c³ - 3abc
Solution :
Using identity : a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca)
a³ + b³ + c³ - 3abc = ( a + b + c ) [a² + b² + c² - (ab + bc + ca)]
We haven't know the value of a² + b² + c²
So, we have to find it.
Identity :
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
( a + b + c)² = a² + b² + c² + 2 ( ab + bc + ca)
Now, put all the values.
( 6 )² = a² + b² + c² + 2 ( 11 )
36 = a² + b² + c² + 22
a² + b² + c² = 36 - 22
a² + b² + c² = 14
Now, we have all the values used in eqⁿ (1)
That is, a + b + c
a² + b² + c²
ab + bc + ca
So. Put these values in eqⁿ (1)
a³ + b³ + c³ - 3abc
= ( 6 ) ( 14 - 11 )
= ( 6 ) ( 3 )
= 18
Answer is 18.
HOPE IT HELPS YOU..
Similar questions