a+b+c=7
abc=-72
a^2b+b^2a+b^2c+c^2b+c^2a+a^2c=34
a^3+b^3+c^3=?
Answers
Answered by
3
Step-by-step explanation:
Given Given a+b+c = 7 abc = 72 , a^2b+b^2a+b^2c+c^2b+c^2a+a^2c = 34 so a^3+b^3+c^3 = ?
- By putting the formula
- (a + b + c)^3 = a^3 + b^3 + c^3 + 6abc + 3(a^2b + a^2c + ab^2 + b^2c + bc^2 + ac^2)
- Substituting the given details in the above formula we get
- 7^3 = a^3 + b^3 + c^3 + 6 (- 72) + 3 (34)
- 343 = a^3 + b^3 + c^3 – 432 + 102
- 343 + 432 – 102 = a^3 + b^3 + c^3
- Or a^3 + b^3 + c^3 = 673
Reference link will be
https://brainly.in/question/16370492
Similar questions