a+b+c =7 and a3 +b3+c3-3abc =175 find the value of ab+bc+ca?
Answers
Answered by
0
Answer:
Given:
⇒ a + b + c = 7
⇒ a3 + b3 + c3 - 3abc = 175
Formula Used:
then,
(a + b + c)2 = (a2 + b2 + c2 + 2ab + 2bc + 2ca)
Calculation:
(a + b + c)2 = (a2 + b2 + c2 + 2ab + 2bc + 2ca)
⇒ 49 - 2(ab + bc + ca) = (a2 + b2 + c2) ----(1)
Now,
a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
⇒ 175 = 7 × [49 - 2(ab + bc + ca) - ab - bc - ca]
⇒ 3(ab + bc + ca) = 24
⇒ ab + bc + ca = 8
∴ Required value of ab + bc + ca is 8 Ans.
Similar questions
Science,
3 months ago
World Languages,
3 months ago
English,
7 months ago
English,
1 year ago
Math,
1 year ago