Math, asked by menishray13, 9 months ago

a+b+c =8, ab+bc+ca = 20 find the value of a^3+b^3+ c^3- 3abc
Don't spam ​

Attachments:

Answers

Answered by kripananma20
1

Answer:

 

Step-by-step explanation:

Since (a+b+c)  

2

=a  

2

+b  

2

+c  

2

+2ab+2bc+2ca

(a+b+c)  

2

=a  

2

+b  

2

+c  

2

+2(ab+bc+ca)

a+b+c=8 and ab+bc+ca=20,

(8)  

2

=a  

2

+b  

2

+c  

2

+2×(20)

⇒64=a  

2

+b  

2

+c  

2

+40

∴a  

2

+b  

2

+c  

2

=64−40=24

We know that

a  

3

+b  

3

+c  

3

−3abc

=(a+b+c){a  

2

+b  

2

+c  

2

−(ab+bc+ca)}

∴a  

3

+b  

3

+c  

3

−3abc

=8×(24−20)=4×8=32

[∵a+b+c=8,ab+bc+ca=20 and a  

2

+b  

2

+c  

2

=24]

Thus, a  

3

+b  

3

+c  

3

−3abc=32

Answered by Anonymous
0

menishray13 please i-n-b-o-x me

Similar questions