Math, asked by RahulBanerjee1, 1 year ago

(a+b+c)=8 and a2+b2 +c2=26 then find the value of a3+b3 +c3 _3abc

Answers

Answered by ArchitectSethRollins
10
Hi friend ✋✋✋✋
---------------
your answer
---------------------

Given that : -

(a + b + c) = 8 , (a² + b² + c²) = 26

Then,
---------

(a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)

=> (8)² = 26 + 2(ab + bc + ca)

=> 64 = 26 - 2(ab + bc + ca)

=> 64 - 26 = 2(ab + bc + ca)

=> (ab + bc + ca) = 38/2

=> (ab + bc + ca) = 19

Again,
------------

a³ + b³ + c³ - 3abc

=> (a + b + c)(a² + b² + c² - ab - bc - ca)

=> (a + b + c) [(a² + b² + c²) - (ab + bc + ca)]

=> 8 × (26 - 19)

=> 8 × 7

=> 56

Therefore,
----------------

a³ + b³ + c³ - 3abc = 56

HOPE IT HELPS

RahulBanerjee1: thank you my dear
ArchitectSethRollins: wlcm ^_^
HarishAS: This answer is wrong.
HarishAS: Pls correct it.
ArchitectSethRollins: corrected
HarishAS: Ok.
Anonymous: exact answer :-)
Answered by HarishAS
6
Hey friend , Harish here.

Here is your answer.

a+b+c=8 -(i)

(a ^{2} +b^{2} +c^{2}) = 26  -(ii)

Now, Square on both side in equation (i).We get,

=>(a+b+c)^{2} = 8 ^{2}

=>(a ^{2} +b^{2} +c^{2}) +2(ab + bc + ca) = 64  -(iii)

Now substitute value of equation (ii) in eq (iii)

=>26+2(ab + bc + ca) = 64

=>2(ab + bc + ca) = 64 - 26

=>2(ab + bc + ca) = 38

=>(ab + bc + ca) = 19

We know that ( a³ +b³+c³) -3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca)).

Now by applying the above identity we get,

a ^{3}  + b ^{3}  + c  ^{3} -3abc = (8) ( 26 - 19)

                                              = (8) (7)   

                                              = 56
____________________________________________________

Hope my answer is helpful to u.


RahulBanerjee1: thank you sir
HarishAS: Welcome . And i am not sir brother.
Similar questions