(a+b+c)=8 and a2+b2 +c2=26 then find the value of a3+b3 +c3 _3abc
Answers
Answered by
10
Hi friend ✋✋✋✋
---------------
your answer
---------------------
Given that : -
(a + b + c) = 8 , (a² + b² + c²) = 26
Then,
---------
(a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)
=> (8)² = 26 + 2(ab + bc + ca)
=> 64 = 26 - 2(ab + bc + ca)
=> 64 - 26 = 2(ab + bc + ca)
=> (ab + bc + ca) = 38/2
=> (ab + bc + ca) = 19
Again,
------------
a³ + b³ + c³ - 3abc
=> (a + b + c)(a² + b² + c² - ab - bc - ca)
=> (a + b + c) [(a² + b² + c²) - (ab + bc + ca)]
=> 8 × (26 - 19)
=> 8 × 7
=> 56
Therefore,
----------------
a³ + b³ + c³ - 3abc = 56
HOPE IT HELPS
---------------
your answer
---------------------
Given that : -
(a + b + c) = 8 , (a² + b² + c²) = 26
Then,
---------
(a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)
=> (8)² = 26 + 2(ab + bc + ca)
=> 64 = 26 - 2(ab + bc + ca)
=> 64 - 26 = 2(ab + bc + ca)
=> (ab + bc + ca) = 38/2
=> (ab + bc + ca) = 19
Again,
------------
a³ + b³ + c³ - 3abc
=> (a + b + c)(a² + b² + c² - ab - bc - ca)
=> (a + b + c) [(a² + b² + c²) - (ab + bc + ca)]
=> 8 × (26 - 19)
=> 8 × 7
=> 56
Therefore,
----------------
a³ + b³ + c³ - 3abc = 56
HOPE IT HELPS
RahulBanerjee1:
thank you my dear
Answered by
6
Hey friend , Harish here.
Here is your answer.
-(i)
-(ii)
Now, Square on both side in equation (i).We get,
=>
=> -(iii)
Now substitute value of equation (ii) in eq (iii)
=>
=>
=>
=>
We know that ( a³ +b³+c³) -3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca)).
Now by applying the above identity we get,
____________________________________________________
Hope my answer is helpful to u.
Here is your answer.
-(i)
-(ii)
Now, Square on both side in equation (i).We get,
=>
=> -(iii)
Now substitute value of equation (ii) in eq (iii)
=>
=>
=>
=>
We know that ( a³ +b³+c³) -3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca)).
Now by applying the above identity we get,
____________________________________________________
Hope my answer is helpful to u.
Similar questions