Math, asked by pksda4513, 1 year ago

A+b+c=8 and a2+b2+c2=64 find ab+ bc+ca

Answers

Answered by Anonymous
47
<u><i>
Heya

Using identity

⏩(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca⏪

The answer is 0.

Plz see the attachment

Hope this helps you.
Attachments:

Anonymous: nyc ❣️
Anonymous: ^_^
Anonymous: Awesome
Anonymous: ^_^
Answered by TRISHNADEVI
8
✍✍HERE IS YOUR ANSWER..⬆⬆

======================================

\underline{SOLUTION}

\underline{Given },\\ \\ a + b + c = 8 \\ \\ a {}^{2} + b {}^{2} + c {}^{2} = 64


\underline{To \: find }\: : ab + bc + ca = ?

\underline{We \: \: know \: \: that, }\\ \\ \boxed{ (a + b + c) {}^{2} = a {}^{2} + b {}^{2} + c {}^{2} + 2ab + 2bc + 2ca}

\underline{From \: \: this \: \: above \: \: identity \: ,\: we \: \: get ,}\\ \\ (a + b + c) {}^{2} = a { }^{2} + b {}^{2} + c {}^{2} + 2ab + 2bc + 2ca \\ \\ = > (a + b + c) {}^{2} = ( a {}^{2} + b {}^{2} + c {}^{2}) + 2( ab + bc + ca ) \\ \\ = > 2(ab + bc + ca) = (a + b + c) {}^{2} -( a {}^{2} + b {}^{2} + c {}^{2} ) \\ \\ = > ab + bc + ca = \frac{(a + b + c) {}^{2} - (a {}^{2} + b {}^{2} + c {}^{2} )}{2} \: \: \: \: \: \: \: - - - - - - > (1)

\underline{By \: \: putting \: \: the \: \: values \: \: of \: (a + b + c) {}^{2}} \: \: \\ \underline{and \: \: (a {}^{2} + b {}^{2} + c {}^{2} ) \: \: in \: \: eq.(1) \: ,\: we \: \: get,}


ab + bc + ca = \frac{(a + b + c) {}^{2} - (a {}^{2} + b {}^{2} + c {}^{2} }{2} \\ \\ = > ab + bc + ca = \frac{(8) {}^{2} - 64}{2} \\ \\ = > ab + bc + ca = \frac{64 - 64}{2} \\ \\ = > ab + bc + ca = \frac{0}{2} \\ \\ = > ab + bc + ca = 0



\underline{ANSWER}

\boxed{\pink{ab + bc + ca = 0}}

__________________________________

<marquee>

✝✝…HOPE…IT…HELPS…YOU…✝✝
Similar questions