Math, asked by janetvarghese2635, 9 months ago

A+b+c=9, and ab+bc+ca=14, find a2+b2+c2

Answers

Answered by MisterIncredible
4

☞☞☞ Answer ☜☜☜

♦ Given :

a + b + c = 9

ab + bc + ca = 14

\rule{400}{6}

Required to find ✍:

1. \:  {a}^{2}  +  { b}^{2}  +  {c}^{2}

\rule{400}{6}

✮ Identity Used :

(x + y + z {)}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2zx

\rule{400}{6}

✤ solution :

In the question the given information is ;

a + b + c = 9

ab + bc + ca = 14

Now, Let's consider

a + b + c = 9

➟Now let's do squaring on both sides

( a + b + c )^2 = (9)^2

a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 81

Now let's take 2 as common on the L.H.S. side

a^2 + b^2 + c^2 + 2 ( ab + bc + ca ) = 81

Hence ;

From the above the above given information

we can substitute that ;

ab + bc + ca = 14

Therefore; by substitution we get

a^2 + b^2 + c^2 + 2 ( 14 ) = 81

a^2 + b^2 + c^2 + 28 = 81

==> a^2 + b^2 + c^2 = 81 - 28

==> a^2 + b^2 + c^2 = 53

Hence ;

\bold{\large{\boxed{\longrightarrow{\boxed{{a}^{2}+{b}^{2}+{c}^{2}\:=\:53}}}}}

\rule{400}{6}

Similar questions