Math, asked by dashdasarathi123, 3 months ago

A+B+C=90 ; cotA+cotB+cotC= cotA.cotB.cotC​

Answers

Answered by aashishmkumar7890
2

Step-by-step explanation:

  1. Taking LHS
  2. CotA+CotB+CotC
  3. Taking Cot common Cot (A+B+C)
  4. Cot90 =0
  5. CotA. CotB. CotC =0
Answered by MrImpeccable
68

ANSWER:

Given:

  • A+B+C=90

To Prove:

  • cotA+cotB+cotC= cotA•cotB•cotC

Proof:

\text{We are given that,}\\\\:\longrightarrow A+B+C=90\\\\:\implies A+B=90-C\\\\\text{Introducing cot function both sides,}\\\\:\implies\cot(A+B)=\cot(90-C)\\\\\text{We know that:}\\\\:\hookrightarrow\cot(X+Y)=\dfrac{\cot(X)\cot(Y)-1}{\cot(Y)+\cot(X)}\:\&\:\cot(90-\theta)=\tan(\theta)\\\\\text{So,}\\\\:\implies\dfrac{\cot(A)\cot(B)-1}{\cot(B)+\cot(A)}=\tan(C)\\\\\text{We know that,}\\\\:\hookrightarrow\tan(\theta)=\dfrac{1}{\cot(\theta)}\\\\\text{So,}\\\\:\implies\dfrac{\cot(A)\cot(B)-1}{\cot(B)+\cot(A)}=\dfrac{1}{\cot(C)}\\\\\text{On cross-multiplying,}\\\\:\implies[\cot(A)\cot(B)-1]\times[\cot(C)]=\cot(A)+\cot(B)\\\\:\implies\cot(A)\cot(B)\cot(C)-\cot(C)=\cot(A)+\cot(B)\\\\\text{Transposing cotC to RHS,}\\\\:\implies\cot(A)\cot(B)\cot(C)=\cot(A)+\cot(B)+\cot(C)\\\\\bf{:\implies\cot(A)+\cot(B)+\cot(C)=\cot(A)\cot(B)\cot(C)}\\\\\text{\bf{Hence proved!!!}}

Formulae Used:

  • cot(X+Y)=(cotX×cotY-1)/(cotY+cotX)
  • cot(90-X)=tanX
  • tanX=1/(cotX)
Similar questions