a+b+c=90 then prove sin2a+ sin2b +sin2c=4 cosacosbcosc
Answers
Answered by
1
0
Home
»
Forum
»
Trigonometry
»
TRIGONOMETRY PROOF
PROVE SIN2A+SIN2B-SINC=4COSACOSBSINC
6 years ago
Answers : (2)
Dear bayana,
he double angle formula:
sin 2Θ = 2 sin Θ cos Θ
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
Since A + B + C = π ;
A is a supplement angle of ( B + C )
B is a supplement angle of ( A + C )
C is a supplement angle of ( A + B )
TAKE NOTE that the sine of supplementary angles are equal !!!
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
From the Sum of Angle Identity:
sin ( α + ß ) = sin α cos ß + cos α sin ß
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
... = 2 ( sin B cos C + cos B sin C ) cos A
..... ..... + 2 ( sin A cos C + cos A sin C ) cos B
..... ..... – 2 ( sin A cos B + cos A sin B ) cos C
... = 2 cos A sin B cos C + 2 cos A cos B sin C
..... ..... + 2 sin A cos B cos C + 2 cos A cos B sin C
..... ..... – 2 sin A cos B cos C – 2 cos A sin B cos C
... = 2 cos A cos B sin C + 2 cos A cos B sin C
... = 4 cos A cos B sin C
Geetakonda:
We all are friends in brainly, aren't we?
Answered by
2
Answer:
Answer is below
Step-by-step explanation:
Attachments:
![](https://hi-static.z-dn.net/files/dd7/a54d8eb2131217ad7a267746611b326c.jpg)
Similar questions