A+B+C=90 THEN PT COS 2A + COS 2B + COS 2C = 1 + 4 SINA SINB SINC
Answers
Answered by
10
Given A+B+C = 90
A+B = 90 - C
now , we can write
cos2A + cos2B = 2cos(A+B).cos(A-B)
[use cosA + cosB = 2cos(A+B)/2.cos(A-B)/2 formula]
and
cos2C = 1 - 2sin²C [use cos2x = 1 - 2sin²x formula]
Substitute these values in the equation
cos2A+cos2B+cos2C
⇒ 2cos(A+B).cos(A-B) + 1 - 2sin²C
⇒2sinC.cos(A-B) + 1 - 2sin²C [since A+B = 90-C]
⇒ 1 + 2sinC[cos(A-B) - sinC]
⇒1 + 2sinC[cos(A-B) - cos(A+B)]
⇒ 1 + 2sinC(2sinA.sinB) [since cos(a-b) - cos(a+b) = 2sina.sinb]
⇒ 1 + 4sinA.sinB.sinC = RHS
Hence , proved.
Hope you understand.
.
.
.
Similar questions
Math,
6 days ago
Computer Science,
6 days ago
Physics,
6 days ago
Math,
13 days ago
Math,
8 months ago