A+b+c=9and ab+bc+ca=23 find a²+b²+c²
Answers
Answered by
2
a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)
a+b+c= 9 (given)
ab+ bc + ca = 23 (given)
⇒ a³+b³+c³- 3abc = 9 (a²+b²+c²- 23) ... (1)
(a+b+c)²= a²+b²+c²+ 2ab+ 2bc+ 2ca
92= a²+b²+c²+ 2(ab+bc+ca)
81= a²+b²+c²+ 2(23)
81 = a²+b²+c²+ 46
a²+b²+c²= 35
from eqation 1 we get,
a³+b³+c³- 3abc
= 9 (35-23)
= 108
Answered by
1
Given that a+b+c = 9 and ab+bc+ca=23.
Given a+b+c=9
On squaring both sides, we get
(a+b+c)^2 = (9)^2
a^2 + b^2 + c^2 + 2(ab + bc + ca) = 81
a^2 + b^2 + c^2 + 2(23) = 81
a^2 + b^2 + c^2 + 46 = 81
a^2 + b^2 + c^2 = 81 - 46
a^2 + b^2 + c^2 = 35.
Hope this helps!
Given a+b+c=9
On squaring both sides, we get
(a+b+c)^2 = (9)^2
a^2 + b^2 + c^2 + 2(ab + bc + ca) = 81
a^2 + b^2 + c^2 + 2(23) = 81
a^2 + b^2 + c^2 + 46 = 81
a^2 + b^2 + c^2 = 81 - 46
a^2 + b^2 + c^2 = 35.
Hope this helps!
ABHAYSTAR:
(^_^)
Similar questions