A+b+c=9and ab+bc+ca=23 find a²+b²+c²
Answers
Answered by
2
a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)
a+b+c= 9 (given)
ab+ bc + ca = 23 (given)
⇒ a³+b³+c³- 3abc = 9 (a²+b²+c²- 23) ... (1)
(a+b+c)²= a²+b²+c²+ 2ab+ 2bc+ 2ca
92= a²+b²+c²+ 2(ab+bc+ca)
81= a²+b²+c²+ 2(23)
81 = a²+b²+c²+ 46
a²+b²+c²= 35
from eqation 1 we get,
a³+b³+c³- 3abc
= 9 (35-23)
= 108
Answered by
4
Hi ,
a + b + c= 9 ------( 1 )
ab + bc + ca = 23-------( 2 )
multiply both sides of equation( 2 )with 2 ,
2ab + 2bc + 2ca = 46 -------( 3 )
As we know the algebraic identity ,
a² + b² + c² + 2ab + 2bc + 2ca = ( a + b +c )²
a² + b² + c² + 46 = 9² { from(1 ) and (3 ) }
a² + b² + c² = 81 - 46
= 35
I hope this helps you .
: )
a + b + c= 9 ------( 1 )
ab + bc + ca = 23-------( 2 )
multiply both sides of equation( 2 )with 2 ,
2ab + 2bc + 2ca = 46 -------( 3 )
As we know the algebraic identity ,
a² + b² + c² + 2ab + 2bc + 2ca = ( a + b +c )²
a² + b² + c² + 46 = 9² { from(1 ) and (3 ) }
a² + b² + c² = 81 - 46
= 35
I hope this helps you .
: )
Similar questions