A+b+c=9and ab+bc+ca=23 find a²+b²+c²
Answers
Answered by
290
a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)
a+b+c= 9 (given)
ab+ bc + ca = 23 (given)
⇒ a³+b³+c³- 3abc = 9 (a²+b²+c²- 23) ... (1)
(a+b+c)²= a²+b²+c²+ 2ab+ 2bc+ 2ca
92= a²+b²+c²+ 2(ab+bc+ca)
81= a²+b²+c²+ 2(23)
81 = a²+b²+c²+ 46
a²+b²+c²= 81-46
a²+b²+c² = 35
a+b+c= 9 (given)
ab+ bc + ca = 23 (given)
⇒ a³+b³+c³- 3abc = 9 (a²+b²+c²- 23) ... (1)
(a+b+c)²= a²+b²+c²+ 2ab+ 2bc+ 2ca
92= a²+b²+c²+ 2(ab+bc+ca)
81= a²+b²+c²+ 2(23)
81 = a²+b²+c²+ 46
a²+b²+c²= 81-46
a²+b²+c² = 35
Answered by
1
Answer:
a²+b²+c²=35
Step-by-step explanation:
Formula used,
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
also, it can be written as,
a²+b²+c²+2(ab+bc+ca)
Now,as given in the question,
a+b+c=9 and ab+bc+ca=23
implies,
(9)²=a²+b²+c²+2(23)
implies,
81-46=a²+b²+c²
therefore,
a²+b²+c²=35
#SPJ2
Similar questions