Math, asked by aparnadey6789, 5 months ago

(a+b+c),(a-b+c),(a+b-c)​

Answers

Answered by Anonymous
2

Answer:

(a+b+c),(a-b+c),(a+b-c)

Answered by devindersaroha43
0

Answer:

Step-by-step explanation:

Answer:(b+c-a)/((a-b)(a-c))+(c+a-b)/((b-c)(b-a))+(a+b-c)/((c-a)(c-b))  

Final result :

0

Step by step solution :

Step  1  :

Equation at the end of step  1  :

    (b+c-a)       (-b+c+a)      (b-c+a)  

(—————————————+—————————————)+———————————

 ((a-b)•(a-c)) ((b-c)•(b-a))  (c-a)•(c-b)

Step  2  :

              b - c + a    

Simplify   —————————————————

          (c - a) • (c - b)

Equation at the end of step  2  :

    (b+c-a)       (-b+c+a)      (b-c+a)  

(—————————————+—————————————)+———————————

 ((a-b)•(a-c)) ((b-c)•(b-a))  (c-a)•(c-b)

Step  3  :

Equation at the end of step  3  :

    (b+c-a)      (-b+c+a)     (b-c+a)  

(—————————————+———————————)+———————————

 ((a-b)•(a-c)) (b-c)•(b-a)  (c-a)•(c-b)

Step  4  :

              -b + c + a    

Simplify   —————————————————

          (b - c) • (b - a)

Equation at the end of step  4  :

    (b+c-a)      (-b+c+a)     (b-c+a)  

(—————————————+———————————)+———————————

 ((a-b)•(a-c)) (b-c)•(b-a)  (c-a)•(c-b)

Step  5  :

Equation at the end of step  5  :

   (b+c-a)     (-b+c+a)     (b-c+a)  

(———————————+———————————)+———————————

 (a-b)•(a-c) (b-c)•(b-a)  (c-a)•(c-b)

Step  6  :

              b + c - a    

Simplify   —————————————————

          (a - b) • (a - c)

Equation at the end of step  6  :

   (b+c-a)     (-b+c+a)     (b-c+a)  

(———————————+———————————)+———————————

 (a-b)•(a-c) (b-c)•(b-a)  (c-a)•(c-b)

Step  7  :

Calculating the Least Common Multiple :

7.1    Find the Least Common Multiple  

    The left denominator is :       (a-b) • (a-c)  

    The right denominator is :       (b-c) • (b-a)  

                Number of times each Algebraic Factor

          appears in the factorization of:

  Algebraic    

  Factor    

Left  

Denominator  

Right  

Denominator  

L.C.M = Max  

{Left,Right}  

a-b  

1

1

1

a-c  

1

0

1

b-c  

0

1

1

    Least Common Multiple:  

    (a-b) • (a-c) • (b-c)  

Calculating Multipliers :

7.2    Calculate multipliers for the two fractions  

  Denote the Least Common Multiple by  L.C.M  

  Denote the Left Multiplier by  Left_M  

  Denote the Right Multiplier by  Right_M  

  Denote the Left Deniminator by  L_Deno  

  Denote the Right Multiplier by  R_Deno  

 Left_M = L.C.M / L_Deno = b-c

 Right_M = L.C.M / R_Deno = -1•(a-c)

Making Equivalent Fractions :

7.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.  

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

 L. Mult. • L. Num.         (b+c-a) • (b-c)    

 ——————————————————  =   —————————————————————

       L.C.M             (a-b) • (a-c) • (b-c)

 R. Mult. • R. Num.      (-b+c+a) • -1 • (a-c)

 ——————————————————  =   —————————————————————

       L.C.M             (a-b) • (a-c) • (b-c)

Adding fractions that have a common denominator :

7.4       Adding up the two equivalent fractions  

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

(b+c-a) • (b-c) + (-b+c+a) • -1 • (a-c)          b2 - bc + ca - a2      

———————————————————————————————————————  =  ———————————————————————————

        (a-b) • (a-c) • (b-c)              (a - b) • (a - c) • (b - c)

Equation at the end of step  7  :

  (b2-bc+ca-a2)     (b-c+a)  

—————————————————+———————————

(a-b)•(a-c)•(b-c) (c-a)•(c-b)

Step  8  :

Calculating the Least Common Multiple :

8.1    Find the Least Common Multiple  

    The left denominator is :       (a-b) • (a-c) • (b-c)  

    The right denominator is :       (c-a) • (c-b)  

                Number of times each Algebraic Factor

          appears in the factorization of:

  Algebraic    

  Factor    

Left  

Denominator  

Right  

Denominator  

L.C.M = Max  

{Left,Right}  

a-b  

1

0

1

a-c  

1

1

1

b-c  

1

1

1

    Least Common Multiple:  

    (a-b) • (a-c) • (b-c)  

Calculating Multipliers :

8.2    Calculate multipliers for the two fractions  

  Denote the Least Common Multiple by  L.C.M  

  Denote the Left Multiplier by  Left_M  

  Denote the Right Multiplier by  Right_M  

  Denote the Left Deniminator by  L_Deno  

  Denote the Right Multiplier by  R_Deno  

 Left_M = L.C.M / L_Deno = 1

 Right_M = L.C.M / R_Deno = (a-b)•-1•-1

Making Equivalent Fractions :

8.3      Rewrite the two fractions into equivalent fractions

 L. Mult. • L. Num.          (b2-bc+ca-a2)    

 ——————————————————  =   —————————————————————

       L.C.M             (a-b) • (a-c) • (b-c)

 R. Mult. • R. Num.      (b-c+a) • (a-b) • -1 • -1

 ——————————————————  =   —————————————————————————

       L.C.M               (a-b) • (a-c) • (b-c)  

Adding fractions that have a common denominator :

8.4       Adding up the two equivalent fractions  

(b2-bc+ca-a2) + (b-c+a) • (a-b) • -1 • -1                  0              

—————————————————————————————————————————  =  ———————————————————————————

         (a-b) • (a-c) • (b-c)               (a - b) • (a - c) • (b - c)

Final result :

0

Processing ends successfully

Step-by-step explanation:

Similar questions