A,B,C and D are the angles of a cyclic quadrilateral. Prove that:
cosA+cosB+cosc+cosD=0
Answers
Answer:
As A,B,C,D are the angles of a cyclic quadrilateral.
so, angle A + angle C= 180°
= >angle A =180°-C
Cos A = -CosC
angle C= 180°- A
Cos C= - Cos A
silly angle B +angle D= 180°
angle B=180°- D
Cos B= -Cos D
angle D=180° -B
Cos D= -Cos B
Now,
L:H:S :
CosA + CosB + Cos C+ Cos D
= Cos A + Cos B + Cos ( 180°- A)+ Cos (180°- B)
= Cos A+Cos B-Cos A -Cos B
= 0(R:H:S)
please mark it as brainlist if it helps ✨
Answer:
As A, B, C, D are the vertices of CyQuad ABCD,
A+C=180° and B+D=180°
By the rules of *associated angles*, we can write,
CosC=Cos(2x90-A)= -CosA.....(1)
We can apply the same process on CosB or CosD......
Then we shall get,
CosB=-CosD................................ (2)
So, in L. H. S.
CosA+CosB+CosC+CosD
=CosA-CosD-CosA+CosD........ From 1&2
=0
Hence, L.H.S=R.H.S., |PROVED|
Step-by-step explanation: