A, B, C and D are the four angles of A cyclic quadrilateral taken in order, prove that
i) Tan A + Tan B + Tan C + Tan D = 0
Answers
Given
A, B, C and D are the four angles of a cyclic quadrilateral.
To Prove
tanA + tanB + tanC + tanD = 0
Proof
As written they are in cyclic quadrilateral. So,
“Sum of opposite angle is 180°.”
Taking L.H.S.
⇒ ∠A + ∠C = 180°
⇒ ∠A = 180° - ∠C
⇒ ∠B + ∠D = 180°
⇒ ∠B = 180° - ∠D
Now,
⇒ tanA = - tanC
⇒ tanA + tanC = 0
Similarly,
⇒ tanB = - tanD
⇒ tanB + tanD = 0
Now,
⇒ tanA + tanB + tanC + tanD
⇒ (tanA + tanC) + (tanB + tanD)
⇒ 0 + 0
⇒ 0
L.H.S. = R.H.S.
Hence, proved
Step-by-step explanation:
Since A, B, C and D are the angles of cyclic quadrilateral.
/_A+/_C=180° and /_B+/_D=180°( sum of opposite sides of a qyadrilateral is 180°).
therefore, tanA+tanB+tanC+tanD
=tan(180°-tanC)+tan(180°-tanD)+tanC+tanD
=tan{(90°×2)-C}+tan{(90°×2)-D}+tanC+tanD
= -tanC-tanD+tanC+tanD
=0
hence, proved.
________________________
hope It helps you!!