A,B,C are angles of triangle, prove that
cos 2a cos 2b cos 2c=-4cosa cosb cosc- 1
Answers
Answered by
1
Given: A+B+C=π
L.H.S=cos2A+cos2B+cos2C
=[2cos(A+B)cos(A−B+(2cos2C−1).....cosC+cosD
=2cos 2C+D cos 2C−D
=2cos(180−C)cos(A−B)+2cos 2 (C−1)
=−2cosC(cos(A−B)−cosC)−1
=−2cosC(cos(A−B)+cos(A+B))−1
=−2cosC(2cosAcosB)−1
=−4cosAcosBcosC−1
Similar questions