Math, asked by piya4338, 1 year ago

a,b,c are in ap then prove that (b+c)²-a²,(c+a)²-b²,(a+b)²-c² are also in ap​

Answers

Answered by Agastya0606
5

Given: a , b , c are in AP .

To find: Prove that (b + c)² - a² , (c + a )² - b², (a + b)² - c² are in AP.

Solution:

  • Now we have given: a , b , c are in AP.
  • Multiply it by 2, we get:

                 2a , 2b , 2c

  • Now subtraction (a + b + c) from each term, we get:

                 2a - (a + b + c ) , 2b -(a + b + c ), 2c - (a + b + c)

  • Solving it, we get:

                 (a - b - c), (b - c - a), (c - a - b)

  • We can rewrite it as:

                 -(b + c - a), -(c + a - b) , -(a + b - c)

                 (b + c - a), (c + a - b), (a + b - c )

  • Now multiplying by (a + b + c) to each term, we get:

                 (b + c - a)(b + c + a), (c + a - b)(c + a + b), (a + b - c)(a + b +c )

  • Now solving it, we get:

                 (b + c)² - c², (c + a )² - b², (a + b)² - c² which are in AP.

  • Hence proved.

Answer:

      So we proved that (b + c)² - a² , (c + a )² - b², (a + b)² - c² are in AP.

Similar questions