Math, asked by chinthalarana1234, 4 months ago

a, b, c are non-coplanar vectors. Prove that the following four points are coplanar.
-a + 4b - 3c, 3a + 2b - 5c, - 3a + 8b - 5c, -3a + 2b + c.
(ii) 6a + 2b - C, 2a - b + 3c, - a + 2b - 4c, -12a - b - 3c.
directions of the coordinate gyes then show​

Answers

Answered by knjroopa
32

Step-by-step explanation:

Given A, b, c are non-coplanar vectors. Prove that the following four points are coplanar.

  • Let P = - a + 4b – 3c
  •       Q = 3a + 2b – 5c
  •       R = - 3a + 8b – 5c
  •      S = - 3a + 2b + c
  • Now we need to find the vectors. So we have
  • PQ = 4a – 2b – 2c
  • QR = - 6a + 6b + 0c
  • RS = 0a – 6b + 6c
  • So now we need to find the determinant, so we get
  •                        4          - 2          - 6
  •                      -6            6             0
  •                       0           - 6            6
  • So we have
  •            4 (36 + 0) – (-2) (-36 – 0) – 2 (36 – 0)
  •                  144 + 2(-36) – 2(36)
  •                  144 – 72 – 72
  •                           0
  • So we have proved that the points PQ, QR and RS are coplanar.
  • Then vector P,Q,R,S points are also coplanar.

Reference link will be

https://brainly.in/question/6583509

Answered by SujayVentrapati
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions