Math, asked by Quinzi, 3 months ago

a, b, c are non vectors. prove four points are coplanar. 6a+2b-c 2a-b+3c-(4)-a+2b-4c -12a-b-3c​

Answers

Answered by knjroopa
19

Step-by-step explanation:

Given A, b, c are non vectors. prove four points are coplanar. 6a+2b-c  2a-b+3c  -a+2b-4c  -12a-b-3c

  • So let A = 6a + 2b – c
  •          B = 2a – b + 3c
  •          C = - a + 2b – 4c
  •          D = - 12a – b – 3c
  • Now we have the vectors, So  
  • Vector AB = - 4a – 3b + 4c
  •  Vector BC = - 3a + 3b – 7c
  • Vector CD = - 11a – 3b + c
  • Now we need to find the determinant of the following. So we have
  •                            -4             - 3          4
  •                             -3               3        -7
  •                             -11           -3          1
  • So – 4(3 – 21) – (-3)(-3 – 77) + 4(9 – (-33))
  •       -4(-18) + 3(- 80) + 4(42)
  •         72 – 240 + 168
  •           240 – 240
  •                 0
  • So AB, BC and CD are coplanar
  • So the points A,B,C and D are also coplanar.

Reference link will be

https://brainly.in/question/29659531

Answered by izmafatima
3

Step-by-step explanation:

@@@@@@@@@#############

Attachments:
Similar questions